Riesz-Martin representation for positive super-polyharmonic functions in A Riemannian manifold

نویسندگان

  • V. Anandam
  • S. I. Othman
چکیده

Let u be a super-biharmonic function, that is, Δ2u≥ 0, on the unit disc D in the complex plane, satisfying certain conditions. Then it has been shown that u has a representation analogous to the Poisson-Jensen representation for subharmonic functions on D. In the same vein, it is shown here that a function u on any Green domain Ω in a Riemannian manifold satisfying the conditions (−Δ)iu ≥ 0 for 0 ≤ i ≤m has a representation analogous to the Riesz-Martin representation for positive superharmonic functions on Ω.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approach to Spectral Problems on Riemannian Manifolds

It is shown that eigenvalues of the Laplace–Beltrami operator on a compact Riemannian manifold can be determined as limits of eigenvalues of certain finite-dimensional operators in spaces of polyharmonic functions with singularities. In particular, a bounded set of eigenvalues can be determined using a space of such polyharmonic functions with a fixed set of singularities. It also shown that co...

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

Well-posedness for the heat flow of polyharmonic maps with rough initial data

We establish both local and global well-posedness of the heat flow of polyharmonic maps from R to a compact Riemannian manifold without boundary for initial data with small BMO norms.

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006